Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry.

نویسندگان

  • K McMillan
  • M Adler
  • D S Auld
  • J J Baldwin
  • E Blasko
  • L J Browne
  • D Chelsky
  • D Davey
  • R E Dolle
  • K A Eagen
  • S Erickson
  • R I Feldman
  • C B Glaser
  • C Mallari
  • M M Morrissey
  • M H Ohlmeyer
  • G Pan
  • J F Parkinson
  • G B Phillips
  • M A Polokoff
  • N H Sigal
  • R Vergona
  • M Whitlow
  • T A Young
  • J J Devlin
چکیده

Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC ) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC(50) values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (K(d) approximately 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor-heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein-protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED(50) values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of inducible nitric oxide synthase by rapid cellular turnover and cotranslational down-regulation by dimerization inhibitors.

Overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of many disorders. iNOS is notably distinguished from constitutive NOSs by its production of large amounts of NO for a prolonged period; hence, it was termed the high-output NOS. Understanding how cells regulate iNOS is a prerequisite for strategies aimed at modulating NO synthe...

متن کامل

Improvement of Tissue Survival of Skin Flaps by 5α-Reductase Inhibitors: Possible Involvement of Nitric Oxide and Inducible Nitric Oxide Synthase

Background: Skin flap grafting is a popular approach for reconstruction of critical skin and underlying soft tissue injuries. In a previous study, we demonstrated the beneficial effects of two 5α-reductase inhibitors, azelaic acid and finasteride, on tissue survival in a rat model of skin flap grafting. In the current study, we investigated the involvement of nitric oxide and inducible nitric o...

متن کامل

Sesquiterpene fractions of Artemisia plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression

Objective(s): Artemisia species are important medicinal plants throughout the world. Some species are traditionally used for their anti-inflammatory effect. The present study was designed to isolate sesquiterpene fractions from several Artemisia species and evaluate their anti-inflammatory activities on key mediators and signaling molecules involved in regulation of in...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2000